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Abstract. High-Spin states of odd-odd '®°Lu were populated using the **°La(3°Si,3nv)'%Lu at a beam
energy of 120 MeV. Twelve new ~y-rays were placed on top of the previously known two rotational bands
built upon mg7,2 ®viiz/2 and whii /2 @ Vi3 2. Extending high-spin states up to 21% and 25~ for each band,
we have observed the onset of band crossing near hw. =~ 0.35 MeV. The band crossing frequency of the
yrast mhii/2 ® vi13/2 band is consistent with the neutron BC band crossing observed in lighter odd-odd

Lu isotopes.

PACS. 21.10.Re

Collective levels — 23.20.En Angular Distribution and correlation measurements —

23.20.Lv  Gamma transitions and level energy — 27.70.+q 150 < A < 189

High-spin states in deformed odd-odd nuclei in the
rare-earth region have revealed a number of intriguing
phenomena. One of them has been signature inversion
(anomalous signature splitting) [1] observed in the yrast
band of 7hyy /o coupled to viyg,o, while the other has been
the anomalously high band crossing frequency for the neu-
tron AB band crossing observed in the band of mg7/, or
mhy1/2 coupled to vhg,s [2]. These two phenomena have
been central themes in recent experimental studies on odd-
odd isotopes of Eu, Th, Ho, Tm, Lu and Ta in an effort
to probe the role of a proton-neutron residual interaction
underlying their mechanism. Among the odd-odd nuclei in
this mass region have Lu isotopes received renewed atten-
tion in recent years—signature inversion observed in the
yrast whyy ;2 ®@viig/ band of A = 160, 162, 164 and 166 [3—
5]; anomalous neutron AB crossing in the mhy /o ® vhg /s
band of 1%4Lu [6, 7]; the first superdeformed bands in 1%4Lu
[8]. Band crossing frequencies for the yrast whyy /o ® Viig/o
band in lighter isotopes such as 1%?Lu [3] and %‘Lu [6-
8] were identically ~ 0.35 MeV. This high band cross-
ing frequency is attributed to the occupied neutron in the
viy3/2 orbital, corresponding to the neutron BC crossing
whose frequency is normally higher than the lowest AB
crossing. Therefore, one can expect the same band cross-
ing frequency for the mwhy;/o ® viiz/e band if it is yrast
in 1%6Lu. Until now the frequency has been known to be
> 0.32MeV [9] because 1%°Lu has been lacking in spin

states high enough to reach band crossing in contrast to
the case of lighter Lu isotopes.

We populated high-spin states in '%6Lu through the
1397,a(3051,3n7) 1% Lu reaction at a beam energy of 120
MeV. The beam was provided by the 12UD tandem accel-
erator and a Linac booster at the University of Tsukuba.
Target current was = 0.1 particle nA over the course of
the experiment. Such a small current was due to trans-
mission efficiency of the Linac booster as well as rela-
tively low abundance of 3°Si (3.1%) in the natural Si used
for a sputtering ion source. A 39La self-supporting foil
with areal density of 15 mg/cm? was used as target. We
used a recently upgraded Tsukuba Ball consisting of ten
BGO Compton-suppressed high-purity Ge detectors and
one low-energy photon spectrometer. The time-to-digital
converter range was set at 500 ns and about 29 million co-
incidence events were collected. The coincidence data were
analyzed by the RADWARE code and the spin-parity as-
signment was made through extracting the ratios of direc-
tional correlation for oriented nuclei.

Gated spectra and level scheme of '%°Lu are shown in
figs. 1 and 2, respectively. The new ~-ray transitions ob-
served in the present work are the six high-lying lines of
320.0, 322.7, 330.0, 361.4, 704.2 and 736.2 keV in band A,
the six high-lying lines of 326.3, 373.2, 690.2, 699.5, 719.5,
749.1 and 780.8 keV in band B, and the line of 281.1 keV
linking band C and D. With these new ~-rays, we could
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Fig. 1. Spectra gated by (a) 617.4 4+ 642.7 keV transitions in
band A and (b) 317.0 4+ 626.3 keV transitions in band B.

extend high-spin states up to 217 and 25~ for band A and
B, respectively. Furthermore, our coincidence data show
that the 626.3-690.2-719.5 keV ~-ray sequence in band B
should replace the previous 625.7-721 keV sequence miss-
ing the 690.2 keV line for the yrast band in ref. [5] and
[9].

Band B was most strongly populated, thereby being
yrast. Since all four bands A, B,C and D do not much
differ in their excitation energy, they are likely to be built
upon the same neutron configuration, i.e., vijz o in this
mass region. According to a previous study on %6Lu [9],
the configurations for band A and B were mg7/57/27 [404]®
Viiz)25/21[642] and mhyq/29/27[514] ® viy3/95/27[642],
respectively. Band C and D were of the same intrinsic
configuration, whg 21/27[541] @ viy3/95/27[642] and were
shown to have the decoupled band structure due to the
lowest K = 1/2 on the proton side.

The spin values in the yrast band B are shown to be
larger by one unit as compared to the previous study [9].
The present spin assignment for band B agrees with other
studies [5,10,11] which carefully examined the energy sys-
tematics as well as the alignment additivity rule for the
yrast bands in odd-odd Lu isotopes. The spin assignment
can be further justified in the light of the systematics
of signature inversion [3] occurring in low-lying states of
yrast bands in Lu isotopes with A = 160, 162, 164 and
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Fig. 2. Level scheme of *SLu.

166. With signature a being defined as I = awmod 2, there
are two signatures @ = 0 or 1 for odd-odd nuclei. Since
the yrast band B is made of mhy; /o ® vii3/2, the signature
a = 0 is favored, while @ = 1 is unfavored. In the case
of normal signature splitting, an even-spin sequence with
AI = 2 should, therefore, form a favored band, thereby
lying lower than an odd-spin sequence in the experimen-
tal Routhian. However, in the case of signature inversion,
the even-spin sequence of the favored band (a = 0) in the
yrast band B lies higher than the odd-spin sequence of
the unfavored band (a = 1) below the inversion spin.

To better illustrate signature inversion, one can make
a plot using a figure of merit AE versus spin I where the
parameter AF is defined as AE = [E(I) — E(I —1)] —
[E(I+1)—E(I)+E(I—-1)— E(I —2)]/2. As the re-
sult is shown in fig. 3, the even-spin sequence with the
favored signature a = 0 lies higher below the inversion
spin I, = 16 and then restores normal signature splitting
with lying lower after the inversion spin, which confirms
the spin assignment for band B to be correct as shown
in fig. 2. It is also noted that the inversion spin decreases
with increasing neutron number. For example, the inver-
sion spin I. decreases from a large value (not measured
yet) down to 20, 18 and 16 as we go from ®°Lu to 162Lu,
16414 and '%%Lu. Then no signature inversion has been re-
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Fig. 3. Signature inversion plot using a parameter AE =
[E(I)-E(I-1)]-[EI+1)—EI)+E(I-1)—E(I-2)]/2
for the yrast band B in '%Lu.

ported so far in heavier lutetium isotopes such '%3Lu and
1707 1.

As the experimental alignment and the dynamic mo-
ment of inertia are shown as a function of rotational fre-
quency in fig. 4, both bands A and B exhibit the onset of
band crossing near hiw. ~ 0.35 MeV. In plotting fig. 4, we
used Harris parameters as Jy = 34 h*MeV~! and J; =
38 hiMeV 3. They were obtained by directly fitting the
experimental values in neighboring nuclei without resort-
ing to constant values used in a two-parameter fit [12]. We
also confirmed these band crossing frequencies by extract-
ing experimental Routhians for the two bands.

The band crossing frequency for band A is somewhat
higher than 0.29 MeV of '4Lu [3] while the one for band
B is the same as the one for the yrast band of *?Lu [3]
and '%*Lu [6-8]. If one invokes the additivity rule [13]
for band crossing frequencies using their known values
in neighboring odd-A and even-even nuclei, one can es-
timate the band crossing frequency for the yrast band in
1664 as follows: hiw.(1%Lu) = hw.(*%°Lu) + hw:(15°YD)
— hwe(1%*YDb) = 0.280+0.360—0.285 = 0.355 MeV, which
is in good agreement with the observed value ~ 0.35 MeV.
This band crossing frequency of the yrast 7hyy /o @ viyg)o
band is consistent with the neutron BC band crossing ob-
served in lighter odd-odd Lu isotopes as well as odd-N and
even-Z nuclei in this mass region [3].
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Fig. 4. (a) Alignment and (b) dynamic moment of inertia as
a function of rotational frequency for band A and B in 1%Lu.
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